lam25 lam2 lam1 lam3 lam4 lam5
Accueil | Annuaire | English | Intranet | Webmail | Dircom |
Accueil > Agenda
juin 2019
mois précédent
mois suivant


Nicolas Prantzos (IAP) - L’énergie des étoiles (une brève histoire d’astrophysique nucléaire)

Vendredi 7 juin 11:00-12:00

je présenterai les différentes étapes qui ont mené à notre compréhension
de la source de l’énergie stellaire, depuis les premières idées d’une
origine gravitationnelle (19ème siècle), en passant par les apports de
la mécanique quantique dans les années 1920 et les découvertes de la
physique nucléaire dans les années 1930 qui ont finalement permis
d’élucider le problème. J’essaierai de placer ces développements et
leurs protagonistes dans le contexte (politique et culturel) de leur époque.

Vianney Lebouteiller (Laboratoire AIM - CEA Saclay) - The interstellar medium of nearby primitive galaxies

Vendredi 14 juin 11:00-12:00

The lack of detection of cold molecular gas in blue compact dwarf (BCD) galaxies is at variance with their intense star-formation episode. In particular, CO, often used a tracer of H2 through a conversion function, is selectively photodissociated in dust-poor environments. A potentially large fraction of H2 is thus expected to reside in the so-called CO-free gas, where it could be traced by neutral gas observed with infrared cooling lines [CI], [CII], and [OI]. Although the fraction of CO-free gas to total molecular gas is expected to be relatively large in metal-poor galaxies, a definite evidence is still lacking because of the difficulty in associating cooling lines with any given heating mechanism. The main issue at stake is to understand the role of molecular gas in the star formation process.

I will first show that the heating mechanism in the neutral gas cannot be dominated by the photoelectric effect on dust grains below a threshold metallicity due to a low abundance of dust and polycyclic aromatic hydrocarbons. I will then present results from a study on the dwarf galaxy IZw18 ( 2% solar metallicity) recently published in Lebouteiller et al. (2017). Optical and infrared lines are used to constrain the physical conditions in the HII region + HI region within a consistent photoionization and photodissociation model. We show that the HI region is entirely heated by a single ultraluminous X-ray source with important consequences on the applicability of [CII] to trace the star-formation rate and to trace the CO-free gas. We derive stringent upper limits on the size of H2 clumps that may be detected in the future with JWST and IRAM/NOEMA. We also show that the nature of the X-ray source can be constrained through the use of our models. I will conclude by proposing that star formation may be quenched in extremely metal-poor dwarf galaxies due to X-ray photoionization.

Hendrik Hildebrandt (Alfa-Bonn) - Cosmological Weak Gravitational Lensing

Vendredi 21 juin 11:00-12:00

Gravitational lensing represents a unique tool to study the dark Universe. Small distortions in the images of galaxies caused by the gravitational lensing effect of the matter distribution in the Universe can be detected over the whole sky. Measuring these coherent distortions makes dark matter structures "visible", allows us to study their growth over cosmic time, and yields cosmological insights complementary to other probes like the cosmic microwave background (CMB). Ongoing wide-field imaging surveys exploit this weak gravitational lensing technique to come up with competitive constraints on important cosmological parameters and insights on fundamental physics.

In this talk I will first introduce the basic concepts of weak gravitational lensing, review the history and challenges of weak lensing measurements, and then concentrate on recent results from the ongoing European Kilo Degree Survey (KiDS) and VISTA Kilo-degree Infrared Galaxy Public Survey (VIKING) projects. These KiDS/VIKING measurements show some tension with CMB measurements from the Planck mission when the standard cosmological model is assumed. The results will be put into context and compared to findings from the two other big cosmic shear experiments (HSC and DES). I will also present brand-new results from a Self-Organised-Map-based calibration of the KiDS+VIKING redshifts and how this influences the cosmological conclusions. Through a careful re-assessment of the HSC and DES results I will show that the discrepancies in large-scale-structure parameters we are seeing today are approaching a level of significance that is similar to the tension in the Hubble constant. Taken together this might hint at a serious problem of the standard ΛCDM paradigm in simultaneously explaining early- and late-time cosmic structure formation. I will conclude with an outlook towards the big experiments of the next decade in this field of research, Euclid and the Large Synoptic Survey Telescope that have the potential to yield some definitive answers to these questions.

Peter Capack (Caltech) - Developing a Standard Model of Galaxies

Vendredi 28 juin 11:00-12:00

In this presentation Peter Capak will argue that a combination of large galaxy surveys and the latest machine learning techniques are allowing astrophysicists to develop a robust statistical model of the extra-galactic universe. If optimally constructed, this model would encapsulate all available information on the likelihood of observing a given type of galaxy as well as its distribution in space and cosmic epoch. The initial motivation for developing elements of this model was improved constraints on dark energy and dark matter, but it also contains significant information on how galaxies form and evolve. He will show how early version of this model have significantly improved photometric redshifts for weak lensing and can be used for spectroscopic target selection. He will conclude with examples of how he is using his models to optimally design observation with facilities in high demand such as Keck, ALMA, and the future JWST and what future techniques need to be developed.

mois précédent
mois suivant
© LAM - Laboratoire d’Astrophysique de Marseille

Pôle de l’Étoile Site de Château-Gombert
38, rue Frédéric Joliot-Curie 13388 Marseille cedex 13 FRANCE

Tél : +33 4 91 05 59 00
Fax : +33 4 91 62 11 90