lam25 lam2 lam1 lam3 lam4 lam5
Accueil | Annuaire | English | Intranet | Webmail | Dircom |
Accueil > Les actualités > Tchouri sous l’œil de Rosetta

 Tchouri sous l’œil de Rosetta

Publié le 26 janvier 2015

De forme surprenante en deux lobes et de forte porosité, le noyau de la comète 67P/Churyumov-Gerasimenko (surnommée Tchouri) révèle une large gamme de caractéristiques grâce aux instruments MIRO, VIRTIS et OSIRIS de la mission Rosetta de l’ESA, à laquelle participent notamment des chercheurs du CNRS et de plusieurs universités , avec le soutien du CNES. On notera notamment pour ce qui concerne notre région la forte implication du Laboratoire d’astrophysique de Marseille (CNRS/Aix-Marseille Université) . Au nombre de sept, leurs études, publiées le 23 janvier 2015 dans Science, montrent également que la comète est riche en matériaux organiques et que les structures géologiques observées en surface résultent principalement des phénomènes d’érosion. L’instrument RPC-ICA a quant à lui retracé l’évolution de la magnétosphère de la comète alors que l’instrument ROSINA cherche les témoins de la naissance du système Solaire.



Le noyau de 67P/Churyumov-Gerasimenko

Les images de la comète 67P prises par la caméra OSIRIS montrent une forme globale inhabituelle composée de deux lobes séparés par un « cou » dont l’origine demeure inexpliquée. Sa surface de composition globalement homogène présente une grande diversité de structures géologiquesqui résultent des phénomènes d’érosion, d’effondrement et de redéposition. L’activité de la comète, surprenante à grande distance du Soleil, se concentre actuellement dans la région du « cou ». L’ensemble des images a permis de réaliser un modèle en trois dimensions de la comète et la topographie détaillée du site original d’atterrissage de Philae. Combiné avec la mesure de la masse, ce modèle a donné la première détermination directe de la densité d’un noyau cométaire qui implique une très forte porosité. Ce modèle fournit également le contexte « cartographique » pour l’interprétation des résultats des autres expériences.

Les propriétés de surface de 67P/Churyumov-Gerasimenko

L’instrument MIRO a permis aux chercheurs d’établir une carte de la température sous la surface de 67P. Celle-ci montre des variations saisonnières et diurnes de température qui laissent supposer que la surface de 67P est faiblement conductrice au niveau thermique, en raison d’une structure poreuse et peu dense. Les chercheurs ont également effectué des mesures du taux de production d’eau de la comète. Celui-ci varie au cours de la rotation du noyau, l’eau dégagée par la comète étant localisée dans la zone de son « cou ».

Une comète riche en matériaux organiques

VIRTIS a fourni les premières détections de matériaux organiques sur un noyau cométaire. Ses mesures de spectroscopie indiquent la présence de divers matériaux contenant des liaisons carbone-hydrogène et/ou oxygène-hydrogène, la liaison azote-hydrogène n’étant pas détectée à l’heure actuelle. Ces espèces sont associées avec des minéraux opaques et sombres tels que des sulfures de fer (pyrrhotite ou troïlite). Par ailleurs, ces mesures indiquent qu’aucune zone riche en glace de taille supérieure à une vingtaine de mètres n’est observée dans les régions illuminées par le Soleil, ce qui indique une forte déshydratation des premiers centimètres de la surface.

La naissance de la magnétosphère d’une comète

En utilisant l’instrument RPC-ICA, les chercheurs ont retracé la naissance de la magnétosphère, depuis les premières détections d’ions aqueux jusqu’au moment où l’atmosphère cométaire a commencé à stopper le vent solaire (aux alentours de 3,3 UA ). Ils ont ainsi enregistré la configuration spatiale de l’interaction précoce entre le vent solaire et la fine atmosphère cométaire, à l’origine de la formation de la magnétosphère de « Tchouri ».

67P/Churyumov-Gerasimenko, témoin de la naissance du système Solaire

Formées il y a environ 4,5 milliards d’années et restées congelées depuis, les comètes conservent les traces de la matière primitive du système Solaire. La composition de leurs noyaux et de leurs comae donne donc des indices sur les conditions physico-chimiques du système Solaire primitif. L’instrument ROSINA de la sonde Rosetta a mesuré la composition de la coma de 67P (la coma, ou chevelure, est une sorte d’atmosphère assez dense entourant le noyau, elle est composée d’un mélange de poussières et de molécules de gaz) en suivant la rotation de la comète. Ces résultats indiquent de grandes fluctuations de la composition de la coma hétérogène et une relation coma-noyau complexe où les variations saisonnières pourraient être induites par des différences de températures existant juste sous la surface de la comète.

Les poussières de la comète 67P/Churyumov-Gerasimenko

Le détecteur de poussière GIADA a déjà récolté une moisson de données (taille, vitesse, direction, composition) sur les poussières de dimensions de 0,1 à quelques millimètres émises directement par le noyau. En complément, les images d’OSIRIS ont permis de détecter des poussières plus grosses en orbite autour du noyau, probablement émises lors du précédent passage de la comète.

Crédits

Le LAM a notamment conçu et développé la caméra OSIRIS-NAC, instrument imageur à haute résolution spatiale en partenariat avec la société ASTRIUM et plusieurs laboratoires européens.

Les laboratoires français impliqués dans ces études sont :
• Laboratoire d’Astrophysique de Marseille (CNRS/ Aix-Marseille Université)
• Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (CNRS/Observatoire de Paris/UPMC/Université Paris Diderot)
• Laboratoire Atmosphères, Milieux, Observations Spatiales (CNRS/UPMC/UVSQ)
• Institut de Recherche en Astrophysique et Planétologie (CNRS/Université Toulouse III – Paul Sabatier)
• Laboratoire de Physique et de Chimie de l’Environnement et de l’espace (CNRS/Université d’Orléans)
• Institut de Planétologie et Astrophysique de Grenoble (CNRS/Université Joseph Fourier)
• Laboratoire d’Etude du Rayonnement et de la Matière en Astrophysique et atmosphères (CNRS/Observatoire de Paris/UPMC/ENS/Université de Cergy-Pontoise)
• Institut d’Astrophysique Spatiale (CNRS/Université Paris-Sud)
• Centre de Recherches Pétrographiques et Géochimiques (CNRS/Université de Lorraine)

Bibliographie

Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko.
S.Gulkis et al., Science, 23 janvier 2015.

67P/Churyumov-Gerasimenko : The Organic-rich surface of a Kuiper Belt comet as seen by VIRTIS/Rosetta.
F. Capaccioni et al., Science, 23 janvier 2015.

On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko.
H. Sierks et al., Science, 23 janvier 2015.

The Morphological Diversity of Comet 67P/Churyumov-Gerasimenko.
N.Thomas et al., Science, 23 janvier 2015.

Dust Measurements in the Coma of Comet 67P/Churyumov-Gerasimenko Inbound to the Sun Between 3.7 and 3.4 AU.
A. Rotundi et al., Science, 23 janvier 2015.

Birth of a comet magnetosphere : A spring of water ions.
H. Nilsson et al., Science, 23 janvier 2015.

Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko.
M. Hässig et al., Science, 23 janvier 2015.

Contacts

Pour OSIRIS :
Chercheur Aix-Marseille Université l Olivier Groussin l T 04 91 05 69 72 l olivier.groussin@lam.fr
Chercheur CNRS (pour GIADA également) l Philippe Lamy l T 04 91 05 59 32 / 06 30 14 92 33 l philippe.lamy@lam.fr

Pour ROSINA :
Chercheur Aix-Marseille Université | Olivier Mousis | 06 60 85 33 92 | olivier.mousis@lam.fr

Presse LAM / OSU Pythéas l Thierry Botti l T 04 94 04 41 06 l thierry.botti@osupytheas.fr
Presse CNRS Provence et Corse l Karine Baligand l T 06 82 99 41 25 l karine.baligand@dr12.cnrs.fr
Presse CNRS l Alexiane Agullo l T 01 44 96 43 90 l alexiane.agullo@cnrs-dir.fr
Presse CNRS l Loic Bommersbach l T 01 44 96 51 51 l presse@cnrs.fr


info portfolio


Les actualités 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 Découverte d’une nouvelle exoplanète par l’instrument SPHERE : PDS70b Nouvelle Image de Vesta avec SPHERE Première lumière pour SPIRou, le chasseur d'exoplanètes L’oxygène trouvé dans la comète Tchouri est plus ancien que le Système solaire. Le rôle primordial de Saturne dans la formation des lunes de Jupiter LE CLATHRATE D'AMMONIAC : UNE NOUVELLE PHASE SOLIDE À PRENDRE EN COMPTE POUR TITAN, ENCELADE ET D'AUTRES OBJETS DU SYSTÈME SOLAIRE Voeux du Laboratoire d'Astrophysique de Marseille L’INSTRUMENT SPHERE RÉVÈLE LES PETITS MONDES ROCHEUX ET GLACÉS DE NOTRE SYSTÈME SOLAIRE Un nuage de gaz géant enveloppant une dizaine de galaxies L’origine de l’océan caché d’Europe expliquée par son accrétion à partir de briques centimétriques Inauguration d'un Laboratoire Commun avec le groupe THALES Première découverte d’une exoplanète par imagerie directe pour SPHERE La mission PLATO adoptée par le Comité du Programme Scientifique de l'ESA Rosetta dévoile les secrets de l’origine du xénon Exoplanet mission gets ticket to ride La comète « Tchouri » aurait mis plusieurs millions d’années à se former Emmanuel Hugot, l’excellence au service de l’innovation en instrumentation pour l’astrophysique ! Rosetta : de nombreux changements détectés à la surface de la comète 67P/Churyumov-Gersimenko Un regard détaillé sur des galaxies naissantes Une des facettes de l'astronomie marseillaise à découvrir 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140
© LAM - Laboratoire d’Astrophysique de Marseille

Pôle de l’Étoile Site de Château-Gombert
38, rue Frédéric Joliot-Curie 13388 Marseille cedex 13 FRANCE

Tél : +33 4 91 05 59 00
Fax : +33 4 91 62 11 90