lam25 lam2 lam1 lam3 lam4 lam5
Accueil | Annuaire | English | Intranet | Webmail | Dircom |
Accueil > Les actualités > Premiers signes de l’existence d’interactions au sein de la matière noire (...)

 Premiers signes de l'existence d'interactions au sein de la matière noire ?

Publié le 21 avril 2015

Pour la toute première fois, une équipe internationale à laquelle est associé Eric Jullo, chercheur au Laboratoire d’Astrophysique de Marseille (OSU Pythéas / CNRS – Université d’Aix Marseille) a pu observer une interaction autre que gravitationnelle au sein de la matière noire. Le suivi d’une collision galactique au moyen du Très Grand Télescope de l’ESO et du Télescope Spatial Hubble du consortium NASA/ESA a effectivement permis de collecter les toutes premières informations concernant la nature de cette mystérieuse composante de l’Univers.



En combinant les données de l’instrument MUSE qui équipe le VLT de l’ESO au Chili aux images acquises par le télescope spatial Hubble, une équipe d’astronomes a pu étudier la collision simultanée de quatre galaxies au sein de l’amas Abell 3827. Elle a notamment été en mesure de localiser la matière contenue au sein de ce système et de comparer la distribution de matière noire aux positions occupées par les galaxies lumineuses.

Etant dotée d’une masse, la matière noire dévie la lumière en provenance des galaxies d’arrière-plan. Cet effet de lentille gravitationnelle a permis à l’équipe de déterminer sa position, en dépit de son invisibilité. Par chance, la collision s’est produite juste devant une cinquième galaxie d’arrière-plan, dont la lumière a dû traverser le champ de la collision avant d’atteindre la Terre. La masse de l’amas a sérieusement déformé l’espace-temps, et donc dévié le trajet de la lumière en provenance de la galaxie lointaine.

Dans l’état actuel de nos connaissances, il apparaît que toutes les galaxies résident au sein de vastes réservoirs de matière noire. La masse de la matière noire, et donc la gravitation qu’elle engendre, permet à des galaxies telle que la Voie Lactée de conserver leur cohésion, en dépit de leur rotation. A cette fin, 85% de la masse totale de l’Univers [1]doit être constituée de matière noire. A ce jour, sa vraie nature demeure toutefois mystérieuse.

C’est en observant la collision entre quatre galaxies que les chercheurs ont découvert l’éloignement progressif d’un réservoir de matière noire par rapport à la galaxie qu’il entoure. La matière noire se situe en effet à quelque 5 000 années-lumière derrière cette galaxie, ce qui représente 50 000 millions de millions de kilomètres. A titre indicatif, rien moins que 90 millions d’années seraient nécessaires à la sonde Voyager de la NASA pour s’éloigner d’autant de la Voie Lactée.

Les théories envisagent un possible éloignement de la matière noire et de la galaxie associée. Pour ce faire, il est nécessaire que la matière noire interagisse avec elle-même, même faiblement, au travers de forces distinctes de la gravitation [2]. Jusqu’à présent, personne n’avait encore observé l’existence d’interactions autres que gravitationnelles au sein de la matière noire.

Richard Massey de l’Université de Durham, auteur principal de cette étude, avance une première explication : « Nous percevons communément la matière noire comme un objet immobile, voire inerte, qui se contente d’exercer une attraction gravitationnelle sur son environnement proche. Mais le fait qu’elle ait été ralentie durant cette collision pourrait bien constituer la toute première preuve de l’existence d’une physique propre à ce côté obscur - l’Univers caché qui nous entoure. »

Les chercheurs soulignent la nécessité de rechercher d’autres causes possibles de ce décalage spatial. De semblables observations d’un plus grand nombre de galaxies, ainsi que des simulations numériques de collisions galactiques, sont ainsi requises.

Liliya Williams de l’Université du Minnesota, membre de l’équipe, ajoute : « La façon dont la matière noire interagit gravitationnellement, contribuant à sculpter l’Univers, atteste de son existence. Toutefois, sa véritable nature nous échappe encore. Nos observations suggèrent la possibilité que la matière noire interagisse par le biais d’autres forces que la gravitation. Elles permettent donc d’exclure certaines hypothèses clés concernant sa vraie nature. »

Cette conclusion s’inscrit dans la continuité des résultats d’une étude récente menée par cette même équipe. Au vu de cette étude, qui consistait en l’observation de 72 collisions entre amas galactiques [3], il est apparu que la matière noire interagissait très peu avec elle-même. Toutefois, le présent travail s’intéresse au mouvement des galaxies individuelles, non à celui des amas de galaxies. Aux dires des chercheurs, il est fort possible que les collisions entre ces galaxies aient duré plus longtemps que les collisions ayant fait l’objet d’une observation dans le cadre de la précédente étude – permettant ainsi aux effets d’une force de frottement – même de faible amplitude – de s’accumuler au fil du temps et d’engendrer un décalage mesurable [4].

Considérés simultanément, les résultats issus de ces deux études permettent, pour la toute première fois, « d’encadrer » le comportement de la matière noire. La matière noire interagit davantage que prévu, mais moins qu’attendu. Massey d’ajouter : « Nous sommes enfin en mesure de délimiter les propriétés de la matière noire – notre connaissance naviguant dans l’une et l’autre directions. »

Plus d’informations
Ce travail de recherche a fait l’objet d’un article intitulé “The behaviour of dark matter associated with 4 bright cluster galaxies located in the 10 kpc core of Abell 3827”, à paraître dans l’édition du 15 avril 2015 de la revue Monthly Notices of the Royal Astronomical Society.

L’équipe est composée de R. Massey (Institut de Cosmologie Numérique, Université de Durham, Durham, Royaume-Uni), L. Williams (Ecole de Physique et d’Astronomie, Université du Minnesota, Minneapolis, Minnesota, Etats-Unis), R. Smit (Institut de Cosmologie Numérique, Royaume-Uni), M. Swinbank (Institut de Cosmologie Numérique, Royaume-Uni), T. D. Kitching (Laboratoire Mullard dédié à la Science Spatiale, University College London, Dorking, Surrey, Royaume-Uni), D. Harvey (Ecole Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, Versoix, Suisse), H. Israel (Institut de Cosmologie Numérique, Royaume-Uni), M. Jauzac (Institut de Cosmologie Numérique, Royaume-Uni ; Département de Recherche en Astrophysique et Cosmologie, Ecole des Sciences Mathématiques, Université de KwaZulu-Natal, Durban, Afrique du Sud), D. Clowe (Département de Physique et d’Astronomie, Université de l’Ohio, Athens, Ohio, Etats-Unis), A. Edge (Département de Physique, Université de Durham, Durham, Royaume-Uni), M. Hilton (Département de Recherche en Astrophysique et Cosmologie, Afrique du Sud), E. Jullo (Laboratoire d’Astrophysique de Marseille, CNRS, Université d’Aix-Marseille, Marseille, France), A. Leonard (University College London, Londres, Royaume-Uni), J. Liesenborgs (Univertsité d’Hasselt, Diepenbeek, Belgique), J. Merten (Jet Propulsion Laboratory, Institut de Technologie de Californie, Pasadena, Californie, Etats-Unis), I. Mohammed (Institut de Physique, Université de Zürich, Zürich, Suisse), D. Nagai (Département de Physique, Université de Yale, New Haven, Connecticut, Etats-Unis), J. Richard (Observatoire de Lyon, Université de Lyon, Saint Geniès Laval, France), A. Robertson (Institut de Cosmologie Numérique, Royaume-Uni), P. Saha (Institut de Physique, Suisse), R. Santana (Département de Physique et d’Astronomie, Université de l’Ohio, Athens, Ohio, Etats-Unis), J. Stott (Département de Physique, Durham, Royaume-Uni) et E. Tittley (Observatoire Royal, Edinbourg, Royaume-Uni).

Notes

[1Les astronomes ont découvert que le contenu matière/énergie de l’Univers se répartit comme suit : 68% d’énergie noire, 27% de matière noire et 5% de matière “ordinaire”. Ainsi donc, la matière noire représente 85% de la masse totale de l’Univers actuel.

[2Les simulations numériques invitent à penser que la friction supplémentaire causée par la collision pourrait ralentir la matière noire. La nature de cette interaction demeure inconnue ; elle pourrait résulter d’effets bien connus ou d’une force exotique encore inconnue. A ce stade toutefois, il est possible d’affirmer que la gravitation n’est en rien responsable de ce ralentissement.

[3Les amas de galaxies peuvent contenir un millier de galaxies

[4La durée de la collision constitue la principale inconnue du problème : la force de frottement responsable du ralentissement de la matière noire peut être de très faible intensité et avoir agi durant un milliard d’années, ou bien au contraire être de forte intensité et n’avoir agi qu’un centaine de millions d’années.

Voir en ligne : Communiqué de presse ESO


info portfolio


Les actualités 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 Découverte d’une nouvelle exoplanète par l’instrument SPHERE : PDS70b Nouvelle Image de Vesta avec SPHERE Première lumière pour SPIRou, le chasseur d'exoplanètes L’oxygène trouvé dans la comète Tchouri est plus ancien que le Système solaire. Le rôle primordial de Saturne dans la formation des lunes de Jupiter LE CLATHRATE D'AMMONIAC : UNE NOUVELLE PHASE SOLIDE À PRENDRE EN COMPTE POUR TITAN, ENCELADE ET D'AUTRES OBJETS DU SYSTÈME SOLAIRE Voeux du Laboratoire d'Astrophysique de Marseille L’INSTRUMENT SPHERE RÉVÈLE LES PETITS MONDES ROCHEUX ET GLACÉS DE NOTRE SYSTÈME SOLAIRE Un nuage de gaz géant enveloppant une dizaine de galaxies L’origine de l’océan caché d’Europe expliquée par son accrétion à partir de briques centimétriques Inauguration d'un Laboratoire Commun avec le groupe THALES Première découverte d’une exoplanète par imagerie directe pour SPHERE La mission PLATO adoptée par le Comité du Programme Scientifique de l'ESA Rosetta dévoile les secrets de l’origine du xénon Exoplanet mission gets ticket to ride La comète « Tchouri » aurait mis plusieurs millions d’années à se former Emmanuel Hugot, l’excellence au service de l’innovation en instrumentation pour l’astrophysique ! Rosetta : de nombreux changements détectés à la surface de la comète 67P/Churyumov-Gersimenko Un regard détaillé sur des galaxies naissantes Une des facettes de l'astronomie marseillaise à découvrir 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140
© LAM - Laboratoire d’Astrophysique de Marseille

Pôle de l’Étoile Site de Château-Gombert
38, rue Frédéric Joliot-Curie 13388 Marseille cedex 13 FRANCE

Tél : +33 4 91 05 59 00
Fax : +33 4 91 62 11 90