lam25 lam2 lam1 lam3 lam4 lam5
Accueil | Annuaire | English | Intranet | Webmail | Dircom |
Accueil > Les actualités > La comète « Tchouri » aurait mis plusieurs millions d’années à se (...)

 La comète « Tchouri » aurait mis plusieurs millions d’années à se former

Publié le 7 avril 2017

Le chauffage produit par la désintégration d’isotopes de l’aluminium et du fer potentiellement présents dans la comète 67P/Churyumov-Gerasimenko aurait été trop important au début de la vie de la nébuleuse protosolaire pour expliquer la présence de matériaux à basse température. En effet, la présence du monoxyde de carbone, de l’azote ou de l’argon, mise en évidence dans 67P/Churyumov-Gerasimenko par la mission Rosetta, n’est possible que si la comète s’est formée après 2 à 8 millions d’années d’évolution de la nébuleuse afin que celle-ci refroidisse suffisamment et permette à la comète de se former, tout en gardant ses matériaux les plus volatils. L’autre possibilité est que la comète se serait formée lentement sur tout cet intervalle de temps, lui permettant aussi de préserver une grande partie des glaces qu’elle a acquise depuis la nébuleuse. C’est ce que vient de montrer une équipe internationale dirigée par des chercheurs du Laboratoire d’Astrophysique de Marseille (CNRS/Aix-Marseille Université). L’étude a été publiée le 6 avril 2017 dans The Astrophysical Journal Letters.



Les conditions de formation des comètes demeurent encore méconnues. Ces objets se sont agglomérés soit à partir de blocs de constructions directement formés dans la nébuleuse protosolaire, soit d’après des débris provenant de la destruction de plus gros corps parents. Dans ces conditions, l’équipe a simulé l’influence du chauffage radiogénique sur la structure et la composition de corps glacés de tailles comprises entre celles des lobes de 67P/Churyumov-Gerasimenko ( 2.6 km) et de la comète Hale-Bopp ( 70 km), en utilisant les abondances canoniques de l’aluminium 26 et le fer 60, les deux nuclides dont la désintégration est considérée comme une source de chaleur importante pour les corps planétaires formés au tout début de l’histoire du système solaire.

Les résultats de l’étude décrivent qu’il est à la fois impossible de former rapidement 67P/Churyumov-Gerasimenko, ou bien son corps parent, et de préserver les espèces volatiles observées dans la coma par la mission Rosetta. Les simulations attestent que si la croissance a été très rapide, la comète ou son corps parent ont dû se former entre 2,2 et 7,7 millions d’années après l’apparition de la nébuleuse protosolaire. Par contre, si la comète ou son corps parent se sont accrétés lentement, mais toujours sur le même intervalle de temps, alors ils ont pu préserver la majorité de leurs espèces volatiles.

Des délais plus courts de formation ou d’accrétion, compris entre 0,5 et 6,7 millions d’années après la formation de la nébuleuse, sont envisageables si l’on admet que l’intérieur profond de la comète ou de son corps parent ont été appauvris en espèces volatiles par le chauffage radiogénique, et que les couches externes sont restées riches en glaces. Cependant, si 67P/Churyumov-Gerasimenko s’est formée à partir de morceaux issus d’un tel corps parent, ceux ci constitueraient probablement un mélange homogène et il serait impossible de savoir si ces débris proviennent des couches internes ou externe de l’objet primitif.

La principale conclusion de ce travail est que la question de l’origine et des conditions de formation des blocs de construction de 67P/Churyumov-Gerasimenko demeure encore sans réponse. Une mission de retour d’échantillons vers une autre comète de la famille de Jupiter sera probablement nécessaire pour apporter de nouvelles réponses.

Source(s) :

Impact of radiogenic heating on the formation conditions of comet 67P/Churyumov-Gerasimenko, O. Mousis, A. Drouard, P. Vernazza, J. I. Lunine, M., Monnereau, R. Maggiolo, K. Altwegg, H. Balsiger, J.-J. Berthelier,

G. Cessateur, J. De Keyser, S. A. Fuselier, S. Gasc, A. Korth, T. Le Deun, U. Mall, B. Marty, H. Rème, M. Rubin, C.-Y. Tzou, J. H. Waite, and P. Wurz, The Astrophysical Journal Letters, 839:L4 (8 pp), 6 avril 2017

Contact(s) :

Olivier Mousis, LAM (CNRS/Aix-Marseille Université)
olivier.mousis@lam.fr, 06 60 85 33 92


info portfolio


Les actualités 0 | 20 | 40 | 60 | 80 | 100 | 120 LE CLATHRATE D'AMMONIAC : UNE NOUVELLE PHASE SOLIDE À PRENDRE EN COMPTE POUR TITAN, ENCELADE ET D'AUTRES OBJETS DU SYSTÈME SOLAIRE Voeux du Laboratoire d'Astrophysique de Marseille L’INSTRUMENT SPHERE RÉVÈLE LES PETITS MONDES ROCHEUX ET GLACÉS DE NOTRE SYSTÈME SOLAIRE Un nuage de gaz géant enveloppant une dizaine de galaxies L’origine de l’océan caché d’Europe expliquée par son accrétion à partir de briques centimétriques Inauguration d'un Laboratoire Commun avec le groupe THALES Première découverte d’une exoplanète par imagerie directe pour SPHERE La mission PLATO adoptée par le Comité du Programme Scientifique de l'ESA Rosetta dévoile les secrets de l’origine du xénon Exoplanet mission gets ticket to ride La comète « Tchouri » aurait mis plusieurs millions d’années à se former Emmanuel Hugot, l’excellence au service de l’innovation en instrumentation pour l’astrophysique ! Rosetta : de nombreux changements détectés à la surface de la comète 67P/Churyumov-Gersimenko Un regard détaillé sur des galaxies naissantes Une des facettes de l'astronomie marseillaise à découvrir La toile cosmique dans l'Univers distant dévoilée pour la première fois par le sondage VIPERS Mise en évidence de la contamination de la surface des astéroïdes par les poussières interplanétaires Feu vert pour la mission SVOM Meilleurs Voeux - Best Wishes 2017 Proxima b, une exoplanète recouverte d’un océan ? 0 | 20 | 40 | 60 | 80 | 100 | 120
© LAM - Laboratoire d’Astrophysique de Marseille

Pôle de l’Étoile Site de Château-Gombert
38, rue Frédéric Joliot-Curie 13388 Marseille cedex 13 FRANCE

Tél : +33 4 91 05 59 00
Fax : +33 4 91 62 11 90